To run the application outside of the LMS
1) Place your extracted SCORM course into the /course/ directory. The imsmanifest.xml file must be at the root of this directory.

2) Click “launch.htm”

3) Enter your Last Name, First Name (this would be automatically provided by the LMS if there was one)

4) Enter your student id (this would be automatically provided by the LMS if there was one)

5) Select what state/mode you would like to launch the SCOs in. (This code is in-progress)

6) Then select an item from the Table of Contents.

About the application file structure
“/_scorm-player-globals/” contains global files; none should need to be edited.

· blank.htm > blank file loaded into the frameset in scorm12player.htm and scorm2004player.htm prior to loading content.
· browserDetect.js – used by CreateTableOfContents.js to determine the browser being used to view the table of contents
· CreateTableOfContents.js – creates the table of contents by using the ParseXMLToObject.js file to parse the imsmanifest.xml file
· DebugWriter.js – used by all files in the system to output debug information to a popup window.
· ParseXMLToObject.js – parse any XML file to an Object
· scorm12player.htm – Contains all SCORM 1.2 RTE player related JavaScript files and the frameset that loads the content.
· scorm2004player.htm- Contains all SCORM 1.2 RTE player related JavaScript files and the frameset that loads the content.
· Utils.js – Utility class containing methods that may be used by any of the files in the system.
· Json.js – Handles the creation of JavaScript Object Notation strings and parsing those strings to objects.

“/course/” contains the SCORM course you wish to launch. The imsmanifest.xml file must be at the root of this folder.
“/player-12/” contain the SCORM 1.2 API

· api.js – Contains all of the RTE validation logic.
· CMI_DB.js – Contains all the logic necessary to read and write the SCORM RTE data string and send it to oScormData
“/player-2004/” contain the SCORM 2004 API

· api.js – Contains all of the RTE validation logic.

· CMI_DB.js – Contains all the logic necessary to read and write the SCORM RTE data string and send it to oScormData
parser.htm – Contains all imsmanifest parsing related JavaScript files and logic to create the table of contents object.
How it works

launch.htm loads either parser.htm or parserFrameset.htm (which also contains parser.htm) depending on what SCO launch type (this.scoLaunchType) is set in the Config.js file. If you need to change any global settings these are changed in /_scorm-player-globals /Config.js. “createTableOfContentsInstance.initTraverse()” is called when parser.htm is loaded. It creates the Table of Contents that contains a list of activities that the student can launch as well as a list of SCORM attributes for each activity. Clicking on an activity in the Table of Contents launches the following URL with querystring variables:
	launchString = scorm_player_path + "?sco_id="+ scoid +"&path=" + path + "&student_name=" + name + "&student_id=" + studentid + "&data_from_lms=" + datafromlms + "&mastery_score=" + masteryscore + "&max_time_allowed=" + maxtimeallowed + "&time_limit_action=" + timelimitaction + "&cmi_core_credit=" + cmi_core_credit;

Example launchString:

_scorm-player-globals/scorm12player.htm?sco_id=SCO01&path=../course/Lesson01/Resources/sco01.htm&student_name=Caudill,Brian&student_id=123&data_from_lms=SCO1LaunchData&mastery_score=80&max_time_allowed=01:02:25.3&time_limit_action=exit,message& cmi_core_credit=credit
The above string is created using the method CreateTableOfContents.prototype.lookupHrefByRef = function(id,activityId)

When the scorm player is loaded from the path /_scorm-player-globals/scorm12player.htm, doLoadPage(), in scorm12player.htm, executes and loads all of the querystring variables into JavaScript variables and then calls loadCourse which populates the oScormData with all the session data.
	
oScormData.coursePath = coursePath;

oScormData.strStudentId = strStudentId;

oScormData.strSCOId = strSCOId;

oScormData.data = v; //v where v is the scorm session runtime data.

Note: coursePath is the path to the activity that we pulled from the imsmanifest.xml file at manifest.resources.resource.href where manifest.organizations.organization.item.identifierref = manifest.resources.resource.identifier
At this point we have the /_scorm-player-globals/scorm12player.htm loaded with 1 file loaded in its frameset, kd_content_player, contains blank.htm. As soon loadCourse() fires this loads any SCORM data from previous sessions into oScormData.data and loads the content page into the kd_content_player frame that is defined in _scorm-player-globals/scorm12player.htm.
At this point we have:

[image: image1]Any time the SCORM calls, API.SetValue or API.GetValue from the kd_content_player where the SCOs are playing api.js, this data will be stored in a string variable named local_data within CMI_DB.js.

Any time that the content in kd_content_player calls API.Commit() the local_data string that is being created by CMI_DB.js will be stored in oScormData.data and then sent to persistent storage (whether that is a database, cookie, or FLASH Shared Object) by calling saveData() in api.js.

Upon storage the local_data object is converted to JSON and sent to local storage based on the settings for this.storageMediaType in Config.js
An example of the local_data sting is:

	{"cmi.core.student_name":[""],"cmi.core.student_id":"001DEFAULTSTUDENT","cmi.launch_data":[""],"cmi.student_data.mastery_score":[""],"cmi.student_data.max_time_allowed":["05:00:00"],"cmi.student_data.time_limit_action":[""],"cmi.core.credit":["credit"],"cmi.core.lesson_mode":"normal","cmi.core.lesson_status":"completed","cmi.suspend_data":"","cmi.core.lesson_location":"","cmi.core.total_time":"02:02:02.2","cmi.core.entry":"ab-initio","cmi.core.score.raw":"","cmi.core.score.min":"","cmi.core.score.max":"","cmi.comments":"","cmi.comments_from_lms":"No comment","cmi.objectives._count":"0","cmi.interactions._count":"0","cmi.student_preference.audio":"","cmi.student_preference.language":"","cmi.student_preference.speed":"","cmi.student_preference.text":"","cmi.core.session_time":"02:02:02.02"}

LMS Integration
1. Open the “/_scorm-player-globals/Config.js”
2. Edit the following variables to meet your server needs

a. this.studentId

i. This variable represents the id for the student that is launching the course. The student will need to have an id that you can use to tie results back to your system. It may be necessary to use a server side language to initialize this variable at runtime. Example: this.studentId = ‘<?PHP echo(strStudentId); ?>’;

b. this.courseId

i. This variable represents the id for the course that you are launching. Think of a course as a imsmanifest file. Any time you launch an imsmanifest file into the SCORM player you are launching a course. That course will need to have an id that you can use to tie results back to your system. It may be necessary to use a server side language to initialize this variable at runtime. Example: this.courseId = ‘<?PHP echo(strCourseId); ?>’;
c. this.courseRootDirectory
i. Set this to the directory where your courses will be stored. It may be necessary to use a server side language to initialize this variable at runtime. Example: <?PHP echo(strCourseDirVariable); ?>

d. this.storageMediaType

i. If you are running this on a server set it to “server”. If you are running locally for testing set it to “cookie”. If you set this variable to “server” then the SCORM player will use AJAX to communicate with the server URLs defined in this.setDataURL and this.getDataURL

e. this.setDataURL

i. Defines the server page that the SCORM player should post data to so that the SCORM data for this session can be persisted in the database. Data is persisted per course, per SCO, per student. You will need these pieces of information when submitting information to your database.
f. this.getDataURL

i. Defines the server page that the SCORM player should retrieve data from that the SCORM data that was persisted earlier during this session can be retrieved from the database. Data is persisted per course, per SCO, per student. You will need these pieces of information when submitting information to your database.

3. Copy all of the files in the SCORM Player folder on to your server.
4. Within your LMS, point the launch URL for any course to launch.htm and pass in set the variable a and b shown above when you launch the course.

Parser.htm

Activity link to launch a content object

Scorm12player.htm [SCORM API]

oScormData.coursePath = coursePath;

oScormData.strStudentId = strStudentId;

oScormData.strSCOId = strSCOId;

oScormData.data = v; //v where v is the scorm session runtime data.

sco1/sco.htm

[sco contents]

